
寄件日期: 收件者:	2025年10月21日星期二 14:28 tphpd/PLAND				
收件有: 副本: 主旨: 附件:	tpbpd/PLAND Fw: s.16 Planning Application No. A/YL-KTN/1173 KTN 1173 dp.pdf				
<i>,</i>					
Thank you for the phone ca Mr. Tang on phone regarding to the proposal.	all. Please see the attachment for the drainage proposal. Please contact or email to if you have any question				
Your Sincerely, Mr. Tang					

寄件者: 寄件日期:

The Application Site = $\frac{4,850.1 \text{ m}^2}{1,440.0 \text{ m}^2}$ (About) C: 0.95 (Covered with Concrete) C: 0.95 (Covered with Concrete)

Calculation of Desgin Runoff of the Proposed Development, For the design of drains inside the site, For Concrete

 $Q_p = 0.278C I A$

$$A = 4,850.1 + 1,440.0 m2$$

= 6,290.1 $m2$
= 0.0062901 $km2$

 $t = 0.14465L/H^{0.2}A^{0.1}$ = 0.14465*109/0.5^{0.2}*6290.1^{0.1} = 7.332 min

 $i = 1.16*a/(t+b)^{c}$ = 1.16*505.5/(7.332+3.29)^{0.355} = 253.44457

Q = 0.278*0.95*253*6290.1/1000000= 0.421026 m³/sec = 25262 lit/min (50 years return period, Table 3a, Corrigendum 2024, SDM) and

(16% increase due to climate change)

Check 525mm dia. Pipes by Colebrook-White Equation

By Colebrook White Equation

$$V = -\sqrt{(8gDs)} \log \left(\frac{k_s}{3.7D} + \frac{2.51v}{D\sqrt{(2gDs)}} \right)$$

where:

V = mean velocity (m/s)

g = gravitational acceleration (m/s²)

D = internal pipe diameter (m)

k_s = hydraulic pipeline roughness (m) (Table 14, from DSD SDM 2018, concrete pipe)

v = kinematic viscosity of fluid (m²/s) (Transitional flow and water at 15 degree celcius)

s = hydraulic gradient (energy loss per unit length due to friction)

 $g = 9.81 m/s^2$

D = 0.525 m

 $k_s = 0.00015 \text{ m}$

 $v = 1.14E-06 \text{ m/s}^2$

s = 0.01

Therefore, design V of pipe capacit = 2.584201 m/s

Q = 0.8VA (0.8 factor for sedimentation)

 $= 0.508675 \text{ m}^3/\text{s}$

= 30520.48 lit/min

> 25262 lit/min

Provide 525mm dia. pipe (1:200) has enough capacity to accomend the runoff of the proposed development

The Application Site	=	4,850.1 m ² (About)	C:	0.95 (Covered with Concrete)
Outside the app. Site	=	$1,440.0 \text{ m}^2$ (About)	C:	0.95 (Covered with Concrete)

Calculation of Desgin Runoff of the Proposed Development, For the design of drains inside the site, North side

 $Q_p = 0.278C I A$

A = 1,440.0 m^2 = 1,440.0 m^2 = 0.0014400 km^2

 $t = 0.14465L/H^{0.2}A^{0.1}$

= $0.14465*75/0.133^{0.2}*1440^{0.1}$ = 5.846 min

 $i = 1.16*a/(t+b)^{c}$

 $= 1.16*505.5/(5.846+3.29)^{0.355}$

= 267.36894

Q = 0.278*0.95*267*1440/1000000

= 0.1016815 m^3/sec = 6101 lit/min

(50 years return period, Table 3a,

Corrigendum 2024, SDM) and

(16% increase due to climate change)

Check 375mm dia. Pipes by Colebrook-White Equation

By Colebrook White Equation

$$V = -\sqrt{(8gDs)} \log \left(\frac{k_s}{3.7D} + \frac{2.51v}{D\sqrt{(2gDs)}} \right)$$

where:

 $V = mean \ velocity \ (m/s)$

g = gravitational acceleration (m/s²)

D = internal pipe diameter (m)

k_s = hydraulic pipeline roughness (m) (Table 14, from DSD SDM 2018, concrete pipe)

v = kinematic viscosity of fluid (m²/s) (Transitional flow and water at 15 degree celcius)

s = hydraulic gradient (energy loss per unit length due to friction)

 $g = 9.81 m/s^2$

D = 0.375 m

 $k_s = 0.00015 \text{ m}$

 $v = 1.14E-06 \text{ m/s}^2$

s = 0.01

Therefore, design V of pipe capacit = 2.097119 m/s

Q = 0.8VA (0.8 factor for sedimentation)

 $= 0.210611 \text{ m}^3/\text{s}$

= 12636.65 lit/min

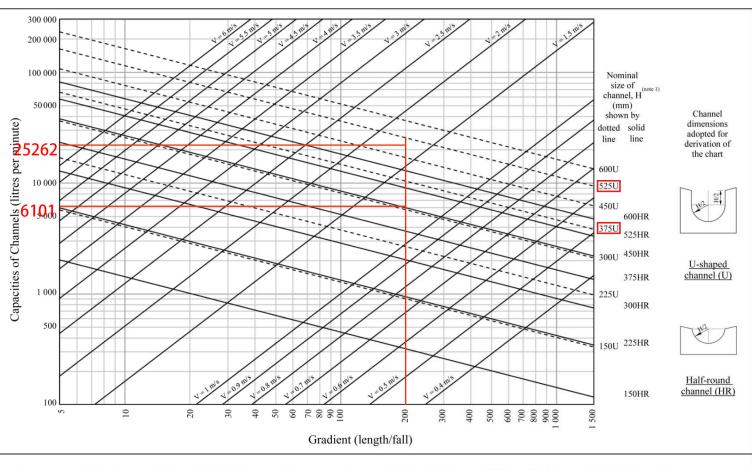
> 6101 lit/min

Provide 375mm dia. pipe (1:200) has enough capacity to accomend the runoff of the proposed development

Slopes

Guidelines

on Hydraulic Design of U-shaped and


Half-round Channels on

GEO

Technical

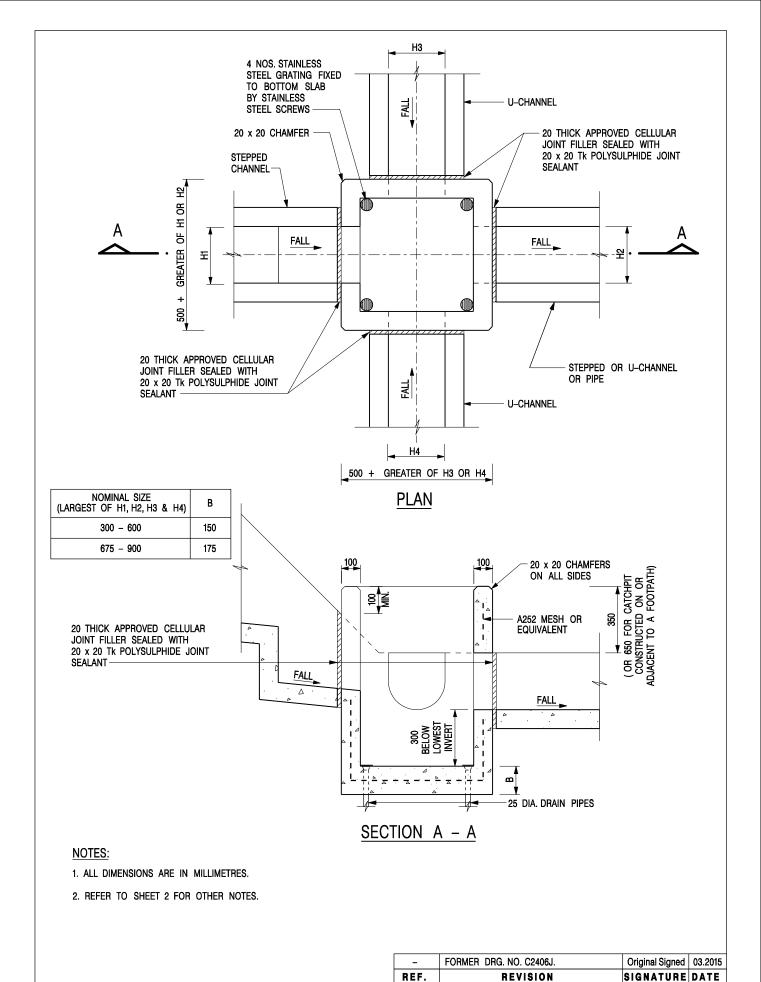
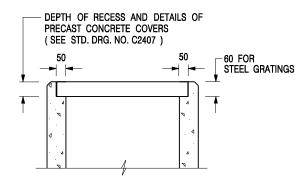

Guidance Note

Figure 1 - Chart for the rapid design of U-shaped and half-round channels up to 600 mm

Note:

(1) Refer to the latest CEDD Standard Drawings for the details of U-shaped (U) and half-round (HR) channels.

CATCHPIT WITH TRAP (SHEET 1 OF 2)


CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT SCALE 1:20 DRAWING NO.

DATE JAN 1991

C2406 /1

卓越工程 建設香港

We Engineer Hong Kong's Development

ALTERNATIVE TOP SECTION FOR PRECAST CONCRETE COVERS / GRATINGS

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES.
- 2. ALL CONCRETE SHALL BE GRADE 20 /20.
- 3. CONCRETE SURFACE FINISH SHALL BE CLASS U2 OR F2 AS APPROPRIATE.
- 4. FOR DETAILS OF JOINT, REFER TO STD. DRG. NO. C2413.
- 5. CONCRETE TO BE COLOURED AS SPECIFIED.
- UNLESS REQUESTED BY THE MAINTENANCE PARTY AND AS DIRECTED BY THE ENGINEER, CATCHPIT WITH TRAP IS NORMALLY NOT PREFERRED DUE TO PONDING PROBLEM.
- 7. UPON THE REQUEST FROM MAINTENANCE PARTY, DRAIN PIPES AT CATCHPIT BASE CAN BE USED BUT THIS IS FOR CATCHPITS LOCATED AT SLOPE TOE ONLY AND AS DIRECTED BY THE ENGINEER.
- FOR CATCHPITS CONSTRUCTED ON OR ADJACENT TO A FOOTPATH, STEEL GRATINGS (SEE DETAIL 'A' ON STD. DRG. NO. C2405) OR CONCRETE COVERS (SEE STD. DRG. NO. C2407) SHALL BE PROVIDED AS DIRECTED BY THE ENGINEER.
- 9. IF INSTRUCTED BY THE ENGINEER, HANDRAILING (SEE DETAIL 'G' ON STD. DRG. NO. C2405; EXCEPT ON THE UPSLOPE SIDE) IN LIEU OF STEEL GRATINGS OR CONCRETE COVERS CAN BE ACCEPTED AS AN ALTERNATIVE SAFETY MEASURE FOR CATCHPITS NOT ON A FOOTPATH NOR ADJACENT TO IT. TOP OF THE HANDRAILING SHALL BE 1 000 mm MIN. MEASURED FROM THE ADJACENT GROUND LEVEL.
- 10. MINIMUM INTERNAL CATCHPIT WIDTH SHALL BE 1 000 mm FOR CATCHPITS WITH A HEIGHT EXCEEDING 1 000 mm MEASURED FROM THE INVERT LEVEL TO THE ADJACENT GROUND LEVEL. AND, STEP IRONS (SEE DSD STD. DRG. NO. DS1043) AT 300 ℃ STAGGERED SHALL BE PROVIDED. THICKNESS OF CATCHPIT WALL FOR INSTALLATION OF STEP IRONS SHALL BE INCREASED TO 150 mm.
- FOR RETROFITTING AN EXISTING CATCHPIT WITH STEEL GRATING, SEE DETAIL 'F' ON STD. DRG. NO. C2405.
- SUBJECT TO THE APPROVAL OF THE ENGINEER, OTHER MATERIALS CAN ALSO BE USED AS COVERS / GRATINGS.

- FORMER DRG. NO. C2406J. Original Signed 03.2015

REF. REVISION SIGNATURE DATE

CIVIL ENGINEERING AND

DEVELOPMENT DEPARTMENT

CATCHPIT WITH TRAP (SHEET 2 OF 2)

 SCALE 1:20
 DRAWING NO.

 DATE JAN 1991
 C2406 /2

卓越工程 建設香港 We Engineer Hong Kong's Development

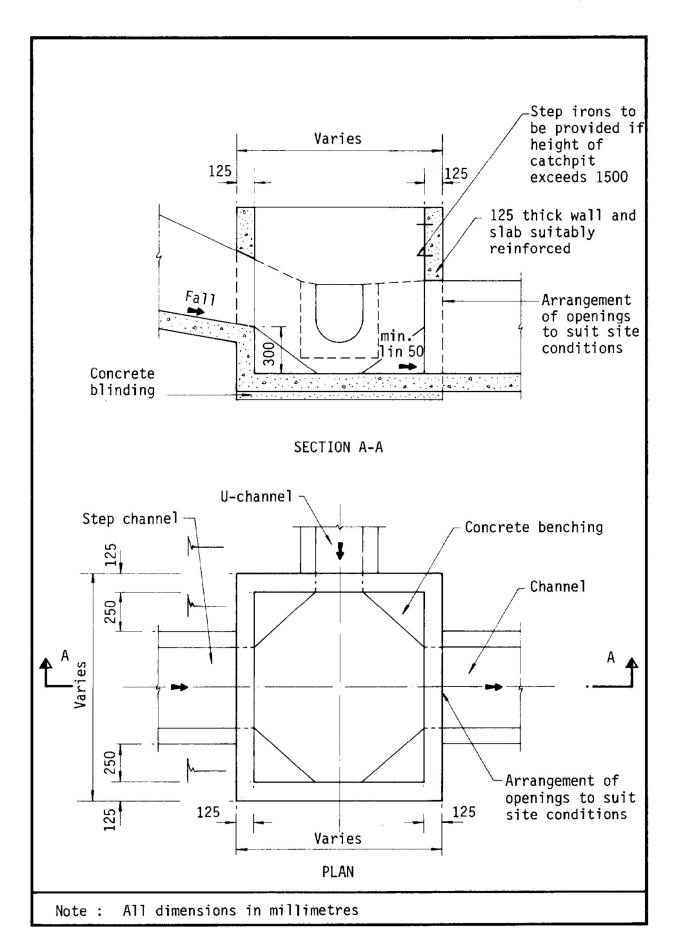


Figure 8.10 - Typical Details of Catchpits

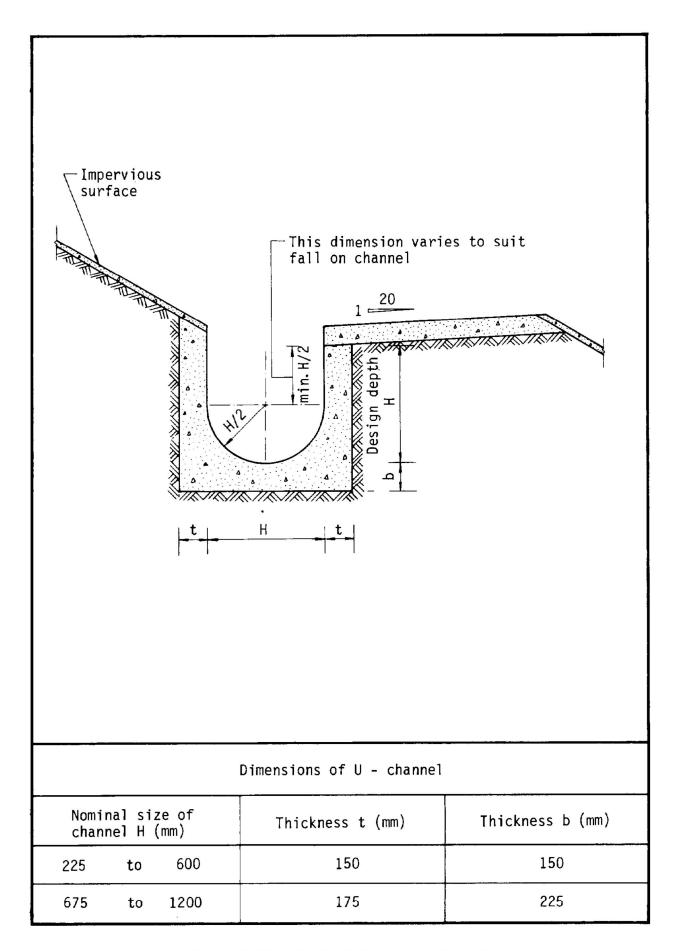


Figure 8.11 - Typical U-channel Details

Table 3a – Storm Constants for Different Return Periods of HKO Headquarters

Return Period T (years)	2	5	10	20	50	100	200	500	1000
a	446.1	470.5	485.0	496.0	505.5	508.6	508.8	504.6	498.7
b	3.38	3.11	3.11	3.17	3.29	3.38	3.46	3.53	3.55
С	0.463	0.419	0.397	0.377	0.355	0.338	0.322	0.302	0.286

Table 3d – Storm Constants for Different Return Periods of North District Area

Return Period T (years)	2	5	10	20	50	100	200
a	439.1	448.1	454.9	462.3	474.6	486.6	501.4
b	4.10	3.67	3.44	3.21	2.90	2.67	2.45
С	0.484	0.437	0.412	0.392	0.371	0.358	0.348

Table 13 - Values of n to be used with the Manning equation

Source: Brater, E.F. & King, H.W. (1976)

Surface	Best	Good	Fair	Bad
Uncoated cast-iron pipe	0.012	0.013	0.014	0.015
Coated cast-iron pipe	0.011	0.012*	0.013*	
Commercial wrought-iron pipe, black	0.012	0.013	0.014	0.015
Commercial wrought-iron pipe, galvanized	0.013	0.014	0.015	0.017
Smooth brass and glass pipe	0.009	0.010	0.011	0.013
Smooth lockbar and welded "OD" pipe	0.010	0.011*	0.013*	
Riveted and spiral steel pipe	0.013	0.015*	0.017*	
Vitrified sewer pipe	0.010	0.013*	0.015	0.017
Common clay drainage tile	0.011	0.012*	0.014*	0.017
Glazed brickwork	0.011	0.012	0.013*	0.015
Brick in cement mortar; brick sewers	0.012	0.013	0.015*	0.017
Neat cement surfaces	0.010	0.011	0.012	0.013
Cement mortar surfaces	0.011	0.012	0.013*	0.015
Concrete pipe	0.012	0.013	0.015*	0.016
Wood stave pipe	0.010	0.011	0.012	0.013
Plank flumes - Planed	0.010	0.012*	0.013	0.014
- Unplaned	0.011	0.013*	0.014	0.015
- With battens	0.012	0.015*	0.016	
Concrete-lined channels	0.012	0.014*	0.016*	0.018
Cement-rubble surface	0.017	0.020	0.025	0.030
Dry-rubble surface	0.025	0.030	0.033	0.035
Dressed-ashlar surface	0.013	0.014	0.015	0.017
Semicircular metal flumes, smooth	0.011	0.012	0.013	0.015
Semicircular metal flumes, corrugated	0.0225	0.025	0.0275	0.030
Canals and ditches				
1. Earth, straight and uniform	0.017	0.020	0.0225*	0.025
2. Rock cuts, smooth and uniform	0.025	0.030	0.033*	0.035
3. Rock cuts, jagged and irregular	0.035	0.040	0.045	
4. Winding sluggish canals	0.0225	0.025*	0.0275	0.030
5. Dredged-earth channels	0.025	0.0275*	0.030	0.033
6. Canals with rough stony beds, weeds on earth banks	0.025	0.030	0.035*	0.040
7. Earth bottom, rubble sides	0.028	0.030*	0.033*	0.035
Natural-stream channels				
1. Clean, straight bank, full stage, no rifts or deep pools	0.025	0.0275	0.030	0.033
2. Same as (1) but some weeds and stones	0.030	0.033	0.035	0.040
3. Winding some pools and shoals, clean	0.033	0.035	0.040	0.045
4. Same as (3), lower stages, more ineffective slope and sections	0.040	0.045	0.050	0.055

Table 13 (Cont'd)

Surface	Best	Good	Fair	Bad
5. Same as (3) some weeds and stones	0.035	0.040	0.045	0.050
6. Same as (4) stony sections	0.045	0.050	0.055	0.060
7. Sluggish river reach, rather weedy or with very deep pools	0.050	0.060	0.070	0.080
8. Very weedy reaches	0.075	0.100	0.125	0.150

Notes: *Values commonly used for design.